The majority of existing post-hoc explanation approaches for machine learning models produce independent per-variable feature attribution scores, ignoring a critical characteristic, such as the inter-variable relationship between features that naturally occurs in visual and textual data. In response, we develop a novel model-agnostic and permutation-based feature attribution algorithm based on the relational analysis between input variables. As a result, we are able to gain a broader insight into machine learning model decisions and data. This type of local explanation measures the effects of interrelationships between local features, which provides another critical aspect of explanations. Experimental evaluations of our framework using setups involving both image and text data modalities demonstrate its effectiveness and validity.
translated by 谷歌翻译
The goal of algorithmic recourse is to reverse unfavorable decisions (e.g., from loan denial to approval) under automated decision making by suggesting actionable feature changes (e.g., reduce the number of credit cards). To generate low-cost recourse the majority of methods work under the assumption that the features are independently manipulable (IMF). To address the feature dependency issue the recourse problem is usually studied through the causal recourse paradigm. However, it is well known that strong assumptions, as encoded in causal models and structural equations, hinder the applicability of these methods in complex domains where causal dependency structures are ambiguous. In this work, we develop \texttt{DEAR} (DisEntangling Algorithmic Recourse), a novel and practical recourse framework that bridges the gap between the IMF and the strong causal assumptions. \texttt{DEAR} generates recourses by disentangling the latent representation of co-varying features from a subset of promising recourse features to capture the main practical recourse desiderata. Our experiments on real-world data corroborate our theoretically motivated recourse model and highlight our framework's ability to provide reliable, low-cost recourse in the presence of feature dependencies.
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
随着复杂的机器学习模型越来越多地用于银行,交易或信用评分等敏感应用中,对可靠的解释机制的需求越来越不断增长。局部特征归因方法已成为事后和模型不足的解释的流行技术。但是,归因方法通常假设一个固定环境,其中预测模型已经受过训练并保持稳定。结果,通常不清楚本地归因在现实,不断发展的设置(例如流和在线应用程序)中的行为。在本文中,我们讨论了时间变化对本地特征归因的影响。特别是,我们表明,每次更新预测模型或概念漂移都会改变数据生成分布时,本地归因都会变得过时。因此,数据流中的局部特征归因只有在结合一种机制结合使用的机制时才能提供高解释性功能,该机制使我们能够随着时间的推移检测和响应局部变化。为此,我们介绍了Cdleeds,这是一个灵活而模型的不合理框架,用于检测局部变化和概念漂移。 CDEREDS是基于归因的解释技术的直观扩展,以识别过时的局部归因并实现更多针对性的重新计算。在实验中,我们还表明,所提出的框架可以可靠地检测到本地和全球概念漂移。因此,我们的工作在在线机器学习中有助于更有意义,更强大的解释性。
translated by 谷歌翻译
随着机器学习(ML)模型越来越多地被部署在高风险应用程序中,决策者提出了更严格的数据保护法规(例如GDPR,CCPA)。一个关键原则是``被遗忘的权利'',它使用户有权删除其数据。另一个关键原则是实现可操作的解释的权利,也称为算法追索权,使用户可以逆转不利的决定。迄今为止,尚不清楚这两个原则是否可以同时进行操作。因此,我们在数据删除请求的背景下介绍和研究追索权无效的问题。更具体地说,我们从理论上和经验上分析流行的最先进算法的行为,并证明如果这些算法产生的记录可能会无效,如果少数数据删除请求(例如1或2)保证书(例如1或2)预测模型的更新。对于线性模型和过度参数化的神经网络的设置 - 通过神经切线内核(NTK)进行了研究 - 我们建议一个框架来识别最小的关键训练点的最小值,当删除时,它将导致最大程度地提高其最大程度的分数。无效的回流。使用我们的框架,我们从经验上确定,从训练集中删除2个数据实例可以使流行的最先进算法最多无效所有回报的95%。因此,我们的工作提出了有关``被遗忘的权利''的背景下``可行解释权''的兼容性的基本问题。
translated by 谷歌翻译
医学图像计算社区面临的核心挑战之一是快速有效的数据样本标签。获得细分的细粒标签以尤其要求,因为它昂贵,耗时,并且需要复杂的工具。相反,应用边界框的快速范围比细粒度的标签要少得多,但不会产生详细的结果。作为回应,我们为弱监督任务提出了一个新颖的框架,将边界盒快速转换为分割面具,而无需训练任何机器学习模型,即创建的Boxshrink。所提出的框架有两个变体 - 快速标签转换的Rapid-boxshrink,以及可靠的Boxshrink,用于更精确的标签转换。与仅使用边界盒注释作为结肠镜检查图像数据集的输入相比,在使用BoxShrink进行培训时,在几种模型中平均有4%的改善。我们为拟议的框架开源代码,并在线发布。
translated by 谷歌翻译
对理解和分解学习的嵌入空间的兴趣正在增长。例如,最近基于概念的解释技术通过可解释的潜在组件分析机器学习模型。必须在模型的嵌入空间中发现此类组件,例如,通过独立的组件分析(ICA)或现代的分离学习技术。尽管这些无监督的方法提供了一个合理的正式框架,但它们要么需要访问数据生成功能,要么对数据分布(例如组件的独立性)施加严格的假设,而这些假设通常在实践中受到侵犯。在这项工作中,我们将视觉模型的概念解释性与解开学习和ICA联系起来。这使我们能够提供有关如何识别组件的第一个理论结果,而无需任何分配假设。从这些见解中,我们得出了与当前方法相比,它适用于更广泛的问题,但拥有正式的可识别性保证。在与组件分析和300多个最先进的分解模型的广泛比较中,即使在不同的分布和相关强度下,DA也稳定地保持了卓越的性能。
translated by 谷歌翻译
随着机器学习(ML)模型越来越多地用于做出结果决定,人们对开发可以为受影响个人提供求助的技术越来越兴趣。这些技术中的大多数提供了追索权,假设受影响的个体将实施规定的recourses \ emph {prirent}。但是,由于各种原因,要求将薪水提高\ $ 500的人可能会获得嘈杂和不一致的方式实施,这可能会获得晋升,而增加了505美元。在此激励的情况下,我们研究了面对嘈杂的人类反应时追索性无效的问题。更具体地说,我们从理论上和经验上分析了最新算法的行为,并证明这些算法产生的记录很可能是无效的(即,如果对它们做出的小变化,则可能导致负面结果) 。我们进一步提出了一个新颖的框架,期望嘈杂的响应(\ texttt {Expect}),该框架通过在嘈杂的响应中明确最大程度地减少追索性无效的可能性来解决上述问题。我们的框架可以确保最多$ r \%$的最多$ r $作为最终用户请求追索权的输入。通过这样做,我们的框架为最终用户提供了更大的控制权,可以在追索性成本和稳定性之间的稳定性之间进行权衡。具有多个现实世界数据集的实验评估证明了所提出的框架的功效,并验证了我们的理论发现。
translated by 谷歌翻译
近年来提出了各种本地特征归因方法,后续工作提出了几种评估策略。为了评估不同归因技术的归因质量,在图像域中这些评估策略中最流行的是使用像素扰动。但是,最近的进步发现,不同的评估策略会产生归因方法的冲突排名,并且计算的昂贵。在这项工作中,我们介绍了基于像素扰动的评估策略的信息理论分析。我们的发现表明,与其实际值相比,通过删除像素的形状而不是信息泄漏的结果。使用我们的理论见解,我们提出了一个新的评估框架,称为“删除和Debias”(ROAD),该框架提供了两种贡献:首先,它减轻了混杂因素的影响,这需要在评估策略之间更高的一致性。其次,与最先进的时间相比,道路不需要计算昂贵的重新训练步骤,并节省了高达99%的计算成本。我们在https://github.com/tleemann/road_evaluation上发布源代码。
translated by 谷歌翻译
了解深度神经网络的结果是朝着更广泛接受深度学习算法的重要步骤。许多方法解决了解释人工神经网络的问题,但通常提供不同的解释。此外,不同的解释方法的超级公路可能导致互相冲突。在本文中,我们提出了一种使用受限制的Boltzmann机器(RBMS)来聚合不同解释算法的特征归属的技术,以实现对深神经网络的更可靠和坚固的解释。关于现实世界数据集的几个具有挑战性的实验表明,所提出的RBM方法优于流行的特征归因方法和基本集合技术。
translated by 谷歌翻译